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ABSTRACT

The impacts of Global Hawk (GH) dropwindsondes on tropical cyclone (TC) analyses and forecasts are

examined over a composite sample of missions flown during the NASAHurricane and Severe Storm Sentinel

(HS3) and the NOAASensing Hazards with Operational Unmanned Technology (SHOUT) field campaigns.

An ensemble Kalman filter is employed to assimilate the dropwindsonde observations at the vortex scale.

With the assimilation of GH dropwindsondes, TCs generally exhibit fewer position and intensity errors,

a better wind–pressure relationship, and improved representation of integrated kinetic energy in the analyses.

The resulting track and intensity forecasts with all the cases generally show a positive impact when GH

dropwindsondes are assimilated. The impact of GH dropwindsondes is further explored with cases stratified

by intensity change and presence of crewed aircraft data. GH dropwindsondes demonstrate a larger impact

for nonsteady-state TCs [non-SS; 24-h intensity change larger than 20 kt (;10m s21)] than for steady-state

(SS) TCs. The relative skill from assimilating GH dropwindsondes ranges between 25% and 35% for either

the position or intensity improvement in the final analyses overall, but only ~5%–10% for SS cases alone. The

resulting forecasts for non-SS cases show higher skill for both track and intensity than SS cases. In addition,

the GH dropwindsonde impact on TC forecasts varies in the presence of crewed aircraft data. An increased

intensity improvement at long lead times is seen when crewed aircraft data are absent. This demonstrates the

importance of strategically designing flight patterns to exploit the sampling strengths of the GH and crewed

aircraft in order to maximize data impacts on TC prediction.

1. Introduction

The National Oceanic and Atmospheric Administra-

tion (NOAA)’s unmanned aircraft system (UAS) pro-

gram’s Sensing Hazards with Operational Unmanned

Technology (SHOUT; 2015–16) was designed to collect

observations in high-impact weather events such as

tropical cyclones (TCs). One such UAS that the pro-

gram has extensively utilized is the Northrup–Grumman

Global Hawk (GH;Watts et al. 2012). The GH operates

at an altitude range of 16750–19800m (55000–65000 ft),

has a cruising speed of 620 kmh21 (;335 kt), and can fly

a range over 17 000km (9000n mi). It was previously

used to collect TC observations by NASA during the

Genesis and Rapid Intensification Processes (GRIP;

2010) experiment (Braun et al. 2013) and the Hurricane

and Severe Storm Sentinel (HS3; 2012–14; Braun et al.

2016).

One of the goals of SHOUT is to assess the influence of

UASdata on the prediction of high-impact weather events

such as TCs, particularly those affecting theUnited States.

The present study performs a set of data denial experi-

ments to evaluate the impact of GH datasets. Specifically,

we focus on GH dropwindsondes (dropsondes hereafter;

Hock and Franklin 1999) from both HS3 and SHOUT

field campaigns.

UAS platforms are capable of collecting observations in

dangerous weather conditions that are otherwise not

reachable by crewed aircraft (Cione et al. 2016). In partic-

ular, a high-altitude, long-endurance UAS, such as the GH,

can provide data complementing traditional TC recon-

naissance and/or surveillance aircraft. For example, while

NOAA’s WP-3D Orion (P-3) and Gulfstream IV-SP
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(G-IV) aircraft typically operate at altitudes of 10000 ft

(;3000m) and 45000 ft (;13000m), respectively, for up to

;8–10h of flight time (Aberson and Franklin 1999; Rogers

et al. 2006), the GH operates at much higher altitudes, with

an endurance of up to 24h (e.g., Christophersen et al. 2017).

Indeed, recent observational studies have demonstrated

that high-altitude dropsondes can reveal the evolution of

a TC’s kinematic and thermodynamic structure in a much

more vertically complete sense, compared to traditional TC

reconnaissance aircraft (Zawislak et al. 2016; Rogers et al.

2016; Doyle et al. 2017).

Although numerous studies have shown that assimi-

lating dropsondes results in positive impacts on TC track

(Aberson and Franklin 1999; Chou et al. 2011; Majumdar

et al. 2013) and intensity (Aberson and Franklin 1999;

Torn 2014) forecasts, studies that focus on vortex-scale

assimilation of high-altitude (i.e., 55 000–65 000 ft)

dropsondes have so far been limited, largely due to the

only recent availability of these high-altitude dropsondes

since the GRIP experiment. The two case studies of

Edouard (2014) presented in Christophersen et al.

(2017) illustrated the benefits of assimilating GH high-

altitude dropsondes in a high-resolution vortex-scale

data assimilation (DA) system. The TC was at hurri-

cane intensity in both cases. Specifically, in the first

case, when the TC inner core was exclusively sampled

by GH dropsondes, consistently better intensity

forecasts were obtained than without the data, while

in the second case, when GH dropsondes sampled

the TC’s near environment more exclusively than the

inner-core region, persistent track forecast improve-

ment was achieved. Meanwhile, Christophersen et al.

(2017) also pointed out some of the challenges of

assimilating inner-core GH dropsondes to represent

complex storm structures, such as double eyewalls. The

present study extends these case studies to a composite

analysis and seeks to generalize the impact of GH

dropsondes on TC track, intensity, and structure.

While there has been some improvement in TC in-

tensity forecasts over the past few decades (DeMaria et

al. 2014), intensity change prediction still remains chal-

lenging. Improved prediction of rapid intensification

(RI) continues to be a high priority for operations

(Rappaport et al. 2012). Therefore, we examine the

impact of assimilating GH dropsondes with respect to

whether a storm is in a steady state (SS) or not (i.e.,

intensifying or weakening). This study is presented as

follows. Section 2 discusses the cases examined, the DA

and forecast systems, and the experiment setup. Section 3

shows the GH dropsondes’ performance in DA obser-

vation space. The impacts of GH dropsondes on both

analyses and forecasts are further investigated with all

cases (section 4), cases stratified by intensity change

(section 5), and cases that included additional observa-

tions from crewed aircraft (section 6). Two cases that

have large track improvement with GH dropsondes are

briefly discussed in section 7. A summary and concluding

remarks are given in the final section.

2. Data and experiments

a. Dataset description

Table 1 lists the TCs examined in this study, along with

their peak intensity at the analysis time: 10-m maximum

1-min sustained wind speed in kt (1kt5 0.5144ms21), as

reported in the National Hurricane Center (NHC) best

track dataset (Jarvinen et al. 1984). This list contains 10

TCs from the 2012–16 Atlantic hurricane seasons that

were observed by GH dropsondes. The selected TCs

cover a wide range of sizes, structures, and intensities and

include two major hurricanes: Edouard (2014) and Mat-

thew (2016).We performDAexperiments wheneverGH

dropsonde measurements are available and denote each

forecast initialized at 6-hourly synoptic times as a ‘‘case.’’

For each TC, we list the number of cases having GH

dropsondes within a 108 3 108 assimilation domain cen-

tered on the TC and within 63h of the synoptic time

(Table 1). The locations and intensities at the analysis

times in Table 1 are shown in Fig. 1. Five of the TCs are

from the HS3 field campaign, while the rest are from the

SHOUTfield campaign. Because of different priorities of

the two field campaigns, most of the HS3 TCs are in the

eastern North Atlantic and were unreachable by crewed

reconnaissance aircraft from typical U.S. deployment

sites, while the SHOUT cases are closer to land.

The TC cases are further stratified by intensity change

following the convention of Rogers et al. (2013). The 12h

following each analysis time are examined to include the

most relevant vortex- and convective-scale processes. A

TABLE 1. Summary of the TC names, number of cases per TC,

peak intensity at the available analysis times, and number of cases

per TC when aircraft reconnaissance and/or surveillance are

present.

TC name

No. of

cases

No. of cases when crewed

aircraft present

Peak in-

tensity (kt)

Nadine (2012) 6 0 70

Gabrielle (2013) 1 1 30

Humberto (2013) 2 0 40

Cristobal (2014) 4 1 75

Edouard (2014) 10 2 95

Erika (2015) 1 1 40

Gaston (2016) 2 0 75

Karl (2016) 5 3 60

Hermine (2016) 5 5 70

Matthew (2016) 4 1 105
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longer time window, such as 24h, may include influences

from interactions with environment (e.g., dry air and

shear). With this estimate, when the intensification rate

during this 12-h period is $20kt (24h)21, the case is la-

beled as intensifying; when the rate is between 220 and

20kt (24h)21, the case is labeled as steady state; and

when the rate is#220kt (24h)21, the case is classified as

weakening. This intensification-rate classification, shown

in Fig. 2, depicts the frequency distribution of the cases

based on intensity. Most of the tropical depressions or

weak tropical storms (,50-kt intensity) are steady state.

Intensifying cases are strong tropical storms ($50-kt in-

tensity) or hurricanes. The weakening TCs are mostly

hurricanes (.60-kt intensity). In total, there are seven

intensifying cases, 27 cases at steady state, and six

weakening cases.

b. Data assimilation system: HEDAS

The Hurricane Ensemble Data Assimilation System

(HEDAS) is a research DA system that consists of an

ensemble square root Kalman filter (Whitaker andHamill

2002) and the Hurricane Weather Research and Fore-

casting (HWRF) Model (Gopalakrishnan et al. 2013). It

assimilates high-resolution observations at the vortex scale

in either an Earth-relative or storm-relative framework

(Aksoy 2013). Christophersen et al. (2017) demonstrated

that assimilating GH dropsondes using HEDAS results in

a positive impact on the prediction of TC track, intensity,

and structure in two cases of Hurricane Edouard (2014).

The present study uses the same HEDAS configuration as

in the previous experiments. Deterministic forecasts from

final ensemble-mean analyses are carried out using the

same HWRF configuration as in DA.

c. Experiment setup

As discussed in Christophersen et al. (2017), the pres-

ence of crewed reconnaissance aircraft observations, es-

pecially tail Doppler radar (TDR) radial wind velocity

superobservations (superobs;Gamache 2005), is critical for

representing the complex TC vortex structure. Hence, the

first set of experiments is run by withdrawing observations

from all crewed aircraft (P-3, G-IV, and U.S. Air Force),

including high-density flight-level observations, Stepped

FrequencyMicrowaveRadiometer (SFMR;Uhlhorn et al.

2007), TDR, and dropsondes.A set of parallel experiments

with and without GH dropsondes is then carried out to

assess the impact of GH dropsondes without the influence

of crewed aircraft observations. Other datasets assimilated

when available in this scenario are the Atmospheric In-

frared Sounder (AIRS) cloud-cleared retrievals (Susskind

et al. 2003), Constellation Observing System for Meteo-

rology, Ionosphere and Climate (COSMIC) global posi-

tioning system (GPS) radio occultation retrieved profiles

(Kuo et al. 2004), nearby rawinsondes, and flight-level

data from the Aircraft Communication, Addressing, and

Reporting System (ACARS).

The second set of experiments is run with observa-

tions from all crewed aircraft included to evaluate the

impact of GH dropsondes when data from crewed air-

craft are present. Table 1 lists the number of cases per

TC when crewed reconnaissance and/or surveillance

aircraft are available.

For each case, the first 30 out of 80members ofNOAA’s

ensemble-based Global Forecast System analyses (Hamill

et al. 2011) are used as the initial and boundary condi-

tions for the HWRF ensemble during the 4-h spinup and

FIG. 1. Locations and intensities of available cases withGHdropwindsonde observations. TCs

1–5 were flown by NASA HS3, while TCs 6–10 were flown by NOAA SHOUT.
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subsequent 4-h DA cycling (62h of the synoptic time).

The DA is only performed on the vortex-following 108 3
108 inner domain with 3-km grid spacing that is embedded

in the 9-km-resolution outer domain with two-way inter-

action. All Earth-relative observations within a 6-h time

window are assimilated in a storm-relative framework

(Aksoy 2013) in 30-min cycles (a total of nine cycles). The

last analysis after the nine cycles is called the ‘‘final’’

analysis in this study. Note that the number of cycles (nine

in this case) and the length of the DA cycling window (4h

in this case) can be flexibly configured independent of the

6-h observation window because storm-relative observa-

tions are randomly redistributed in time, as in Aksoy

(2013). Five-day deterministic forecasts for each case are

initialized from the ensemble mean of the final analyses.

More detailed description of the setup of the DA and

model for the experiments can be found in Christophersen

et al.’s (2017) Table 1.

3. GH dropsondes overall cycling performance

The GH dropsonde data are taken from the traditional

TEMP-DROP format that provides data at mandatory

and significant levels, where the location and time at each

level is estimated from high-resolution launch and splash

positions, times, and measured wind velocities; hence, the

horizontal and vertical drifts of the dropsonde as it falls are

accounted for (Aberson et al. 2017). Data quality-control

and thinning details can be found in Hock and Franklin

(1999), and they are consistent among various field cam-

paigns. Observation errors follow the specifications in

Aksoy et al. (2013). It is noted that the relative humidity

observations from GH dropsondes before the 2016 hurri-

cane season are not corrected for a recently discovered

dry bias (Vömel et al. 2016); these observations are mostly

above 400hPa and are assigned large observation errors

(0.5gkg21) so that they would not have a significant in-

fluence on the analyses (Christophersen et al. 2017).

The overall performance of GH dropsondes is assessed

for cases from all 10 TCs. Figure 3 shows the contoured

frequency by altitude diagram (CFAD; Yuter and Houze

1995) of innovations for temperature T, specific humidity

q, zonal wind speed u, and meridional wind speed y at

observation locations for the first-cycle prior (forecast)

and last-cycle posterior (analysis) during DA. Slightly

more observations of wind and temperature are assimi-

lated than moisture, likely because relatively stronger

gradients of wind and temperature in the upper atmo-

sphere ($200hPa) result in more significant levels in

TEMP-DROP messages. Compared to T and wind, q

presents a more even distribution vertically.

The salient difference between the forecast and anal-

ysis innovation frequencies for all observation types is

that the tails of the distributions are largely eliminated by

the end of cycling. The distributions are also less skewed

in the analyses, compared to the forecasts. Finally, the

analyses have smaller values of kurtosis, indicating their

distributions resemble the Gaussian distribution better

than those of the forecasts. These statistics indicate that

the data are less biased andmoreGaussian after DA and,

hence, are more compatible with the assumptions of the

DA system used here.

Specifically, T exhibits an initially negative bias below

700hPa (possibly suggesting that GFS background fields

are warmer in the lower troposphere than observations,

or an HWRF model bias from the spinup) and a sec-

ondary peak at around 500hPa. After DA, the mode is

at 700–900hPa, although there is still a slight negative

bias in the planetary boundary layer (PBL; Fig. 3a). For

q, the persistent higher frequencies at negative innova-

tions (Fig. 3b) indicate that a dry bias possibly intro-

duced by the initial GFS background is not entirely

eliminated by DA. There is a slight negative bias for u in

the lower troposphere initially, which is mostly removed

after DA (Fig. 3c). In terms of y, distributions exhibit

positive bias initially in the lower and midtroposphere,

likely due to underestimation of intensity in the low-

resolution GFS background fields. After DA, this posi-

tive bias is corrected (Fig. 3d).

4. Overall performance without assimilation of
crewed aircraft observations

a. Analyses

The overall analysis quality after the assimilation of GH

dropsondes in the absence of crewed aircraft observations

FIG. 2. Stacked bar plot of the intensity frequency for all cases in

Table 1 with stratification according to 24-h intensity change.

2300 MONTHLY WEATHER REV IEW VOLUME 146



is assessed by verifying TC position, intensity, minimum

sea level pressure (MSLP), and the wind–pressure rela-

tionship in the final mean analyses against the best track

(Fig. 4). The best track estimates are provided by NHC as

standard b-deck files and follow Jarvinen et al. (1984). The

centers in the model are tracked by the MSLP. In general,

the mean position, intensity, and MSLP improvements

from assimilating GH dropsondes for all of the cases is

about 16%, 15%, and 20%, respectively (see Table 2).

When GH dropsondes are assimilated, the intensity and

MSLPexhibit better linear fits to the best track (Figs. 4b,c),

although a general bias persists, indicating underestima-

tion of intensity, similar to findings by Aksoy et al. (2013)

and Aberson et al. (2015). The mean absolute distance

between the intensity linear regression lines for cases with

and without GH dropsondes is 5.7 and 6.5kt, respectively;

forMSLP, themean absolute distance is 10.4 and 13.4hPa,

respectively. Also, the improvement in analyzed intensity

for stronger cases (intensity $ 65kt) is noteworthy. The

wind–pressure relationship for the experiments with GH

dropsondes also shows closer linear fit than the one with-

outGHdropsondeswhen compared to the best track fitted

line (Fig. 4d). The mean absolute distance in this scenario

for cases with and without GH dropsondes is 6.0 and

7.2hPa, respectively.

The frequency distributions of the position and in-

tensity errors for all cases in the final analyses are also

shown (Fig. 5). The distributions indicate that the mean

errors are reduced when GH dropsondes are assimi-

lated. There is a cluster of cases with smaller position

errors when assimilating GH dropsondes. With the as-

similation of GH dropsondes, the standard deviations

for TC intensity and MSLP absolute errors also are re-

duced (Table 2). This shows that analyses with GH

dropsondes assimilated exhibit better intensity error

consistency (smaller standard deviations) among cases

than analyses without GH dropsondes. However, the

standard deviation of the absolute position errors withGH

dropsondes is larger than that without GH dropsondes.

This is most likely due to a combination of a few outliers

FIG. 3. CFADs for the innovations of (a) temperature T, (b) specific humidity q, (c) zonal wind speed u, and (d)

meridional wind speed y for the first DA cycle’s forecast (blue contours) and the last DA cycle’s analysis (shaded).

Innovations of q are shown on a logarithmic scale. Data distribution ofT, q, u, and y as a function of pressure for the

first cycle’s forecast is also shown on the left for each panel.
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and a smaller mean, which renders larger deviations from

themean, compared to the scenario of a greatermeanwith

similar outliers (Fig. 5a). By examining the median abso-

lute deviation (MAD; a more robust measurement of the

variability of the sample; Wilks 1995) of the absolute po-

sition errors, it is clear that overall position errors are still

reducedwith the assimilation ofGHdropsondes (Table 2).

Visual inspection of Fig. 5a also confirms that the resulting

frequency distribution becomes much narrower around

themode whenGHdropsondes are assimilated, indicating

that the position error variability is smaller for most cases.

However, a Wilcoxon rank-sum test (Wilks 1995) shows

that the two distributions for position, intensity, or MSLP

are not statistically significant at the 95%significance level.

It is noted that TCsmoving at a fast speed (.35kt) are

the outliers we see in Fig. 5, either due to large position

errors or large intensity/MSLP errors. For example, Karl

(2016) on 25 September and Cristobal (2014) on 29

August moved northeastward at a speed of .40kt and

had large position errors (;.100km) regardless of

FIG. 4. Scatterplots showing results from experiments with (blue circles) and without (red circles) GH dropsonde

data for (a) position error [the stars indicatemean position errors for the experiments with (blue) and without (red)

GH dropsonde data], (b) intensity, and (c) MSLP in the final analyses, compared to the best track. (d) The wind–

pressure relationship. The blue, red, and black lines in (b)–(d) represent linear regression fits. The dashed light

black lines in (b),(c) denote the 1:1 lines.

TABLE 2. The mean, standard deviation (Std), and MAD of position errors, MSLP errors, and intensity errors at the final analyses for the

experiments with and without GH dropwindsondes.

Position (km) Intensity (kt) MSLP (hPa)

Mean Std MAD Mean Std MAD Mean Std MAD

With GH 43.3 37.0 14.9 10.6 7.9 2.7 25.7 4.2 4.5

Without GH 51.5 31.6 19.2 13.3 8.5 2.7 26.5 4.5 6.0
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whether GH dropsondes were assimilated. Other out-

liers with large intensity bias (.30kt) are cases where

GH sampled only the outer environment with no addi-

tional inner-core observations to correctly represent the

vortex structure during DA, such as Matthew (2016) at

1800 UTC 5 October and Edouard (2014) at 1800 UTC

14 September.

The structures of TCs in the final analyses are evalu-

ated in Fig. 6 by comparing integrated kinetic energy

(IKE; Powell and Reinhold 2007), quadrant-mean

maximum radius of 34-kt winds (R34; average of the

maximum 34-kt wind speed radii reported in the four

storm quadrants; any quadrants that do not contain

a maximum 34-kt wind speed radii are excluded from

the averaging), and radius of maximum wind speed

(RMW). The calculations of IKE and R34 follow the

same procedure for both themodel analyses and the best

track estimates, although the observational quantities

have larger uncertainties than the model due to obser-

vation sparsity. IKE is a quantity that combines TC in-

tensity and size (Powell and Reinhold 2007). The

calculation of IKE follows Aberson et al. (2015). In

addition, sample correlations among various size and

intensity parameters in Fig. 7 are calculated for the cases

examined, separately for analyses and the best track,

where all radii (R34, R50, and R64) are again the

averages of individual values reported in the four

quadrants.

Comparing Fig. 6a to Figs. 4b and 4c, TC structure

exhibits more variability than intensity. Overall, cases

with GH dropsondes present a higher variance explained

for the linear fits than those cases without. The HEDAS

analyses underestimate IKE, compared to the best track,

which is likely a combination of underestimation of in-

tensity (Fig. 4b), underestimation of R34, especially for

smaller TCs (Fig. 6b), and overestimation of the RMW

(Fig. 6c). However, variations of IKE are nonlinearly

dependent on the TC size and intensity (Powell and

Reinhold 2007; Aberson et al. 2015); thus, the factors

that contribute to IKE errors are difficult to diagnose.

Therefore, we further examine the correlations between

IKE and various TC structure metrics (Fig. 7). For the

experiments with or without GH dropsondes, IKE is

strongly correlated with intensity, R34, and RMW (Figs.

7a,b), while for the best track, IKE is strongly correlated

with R34 and R50 (Fig. 7c). Nonetheless, the correlation

FIG. 5. Frequency distributions of (a) position, (b) MSLP, and (c) intensity errors in the final analyses, compared to

the best track for experiments with and without GH dropsondes assimilated.
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between IKE and R34 is consistently high in both the

analyses and the best track. To further support this

finding, the correlation between IKE and the quadrant-

maximum radius of 34-kt winds radii (the maximum of

34-kt winds radii maximum extent reported in the four

quadrants) is also high, compared to that of IKE and

R34 (not shown). Stepwise regression analysis (Wilks

1995) between IKE and various TC metrics shows that

R34 is the dominant predictor in both the analysis and

the best track in terms of either statistical significance or

adjusted variance explained. Hence, the underestimation

of R34 is hypothesized to be the dominant source of error

in IKE.

We note that both the analyses and the best track

show small correlations between TC intensity and size

(e.g., correlation between intensity and R34, R50, or

R64). We further note that the relatively small sample

size limits our ability to make generalized conclusions

beyond the current study, even though some of these

correlations are statistically significant.

b. Deterministic forecasts

The overall errors and relative skill of the determin-

istic forecasts initialized from the final ensemble-mean

analyses are shown in Fig. 8. In general, we see that the

assimilation of GH dropsondes generally results in im-

provements to both track and intensity forecasts by up to

20%. Specifically, there is a slight improvement to track

forecasts up to 84h when GH dropsondes are assimi-

lated, and most of these improvements are at least 90%

statistically significant. The relative skill of the track

forecasts is maximized at 12 h (;20%) and then gradu-

ally decreases to nearly neutral by 84h. The track errors

aremostly in speed (along track) during the first 48 h and

cross track beyond that. Assimilation of GH dropsondes

does not seem to modify the nature of the track error

FIG. 6. Scatterplots of (a) IKE, (b) R34, and (c) RMW between analyses and the best track for cases with tropical

storm or stronger intensity.
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distributions (not shown). Meanwhile, theMSLP forecasts

with the assimilation of GH dropsondes present mostly

consistent superior skill (;10%) for up to 108-h lead time.

5. Dependence of performance on intensity change

We further address the analysis and forecast perfor-

mance as a function of TC intensity change as classified

in section 2a. Note that the performance calculations

presented in this section continue to use cases with-

out assimilation of crewed aircraft observations. To re-

duce sample size deficiency in the three categories (see

section 2a), the intensifying and weakening cases are

combined into one group, labeled as nonsteady state

(non-SS). This is mainly justified by the fact that the

assimilation of GH dropsondes results in comparable

forecast skill in the intensifying and weakening cases,

although these cases exhibited various TC environments,

and it was difficult to observe commonalities in TC

structure due to limited sample size. To further eliminate

the potential influence of TC intensity on the statistical

outcomes, weak tropical storms and tropical depressions

(TC intensity less than 50kt) are not included in steady-state

cases. Sample sizes thus obtained in the intensification-based

stratificationare 19 for SS cases and13 fornon-SS cases, both

in the intensity range of 50–105kt.

a. Analyses

We first examine mean position and intensity errors,

compared to the best track estimates (linearly interpo-

lated at 30-min cycling frequency) during DA cycles.

Figure 9 shows mean position and intensity errors as

a function of cycle time during the 4-hDAwindow (62 h

centered on the synoptic time), calculated separately for

FIG. 7. Correlation matrix for IKE, intensity (INT), RMW, R34, R50, and R64 (see text for definition) for

experiments (a) withGHdropsondes and (b) withoutGHdropsondes, and (c) the best track. The number of cases is

also denoted in the row of R64 in (a). Hatched areas indicate correlations that are at least 95% statistically

significant.
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SS and non-SS cases. The sawtooth pattern indicates the

change in error (from forecast to analysis) during DA at

a particular cycle (vertical lines) versus the change in

error (from analysis to forecast) during model in-

tegration between two cycles (oblique lines). The saw-

tooth pattern is typical in a cycling DA system (e.g.,

Aksoy et al. 2009, 2012) and ideally indicates the balance

between the decrease in error from assimilating obser-

vations at DA cycles and the growth of forecast error

between DA cycles. In general, the SS cases present

larger position errors and confidence intervals than the

non-SS cases. Furthermore, with GH dropsondes as-

similated, a greater reduction in position errors during

DA cycles is achieved in non-SS cases than SS cases. It is

unclear why SS cases have larger position errors or

larger spread of position errors than non-SS cases,

regardless of whether or not the GH dropsondes are

assimilated. However, as suggested from the larger

average 12-h track error in SS versus non-SS cases (172.8

vs 80.4 km, respectively) in the climatology and persis-

tence (CLIPER; Aberson and Sampson 2003) statistical

model, the track in the SS cases on average is expected

to be more difficult to predict than the non-SS cases

against climatology. We therefore speculate that the

smaller analysis position errors in the non-SS cases are

a general result of the track of these cases being clima-

tologically easier to predict than the SS cases (assuming

12-h linear error growth within the CLIPER model).

For intensity and MSLP (Figs. 9b,c), SS cases in gen-

eral exhibit smaller errors than non-SS cases duringDA,

which is the opposite of what was observed for position

errors (Fig. 9a). Furthermore, the non-SS cases without

GH dropsondes exhibit noticeable increases in error

during cycling. This is likely due to HWRF without the

assimilation ofGHdropsondes not being able to capture

intensity change during cycling. Nevertheless, including

GH dropsondes in DA better captures changes in TC

evolution, resulting in a larger reduction of MSLP and

intensity errors by the end of cycling relative to the one

without-GHdropsondes.Meanwhile, the assimilation of

GH dropsondes shows a relatively small impact on the

mean intensity of the SS cases. GH dropsondes also lead

to a gradual reduction in IKE errors during 4-h DA

cycling for non-SS cases, although steady IKE error

growth occurs regardless of whether GHdropsondes are

assimilated (Fig. 9d). Little impact on IKE is seen for SS

cases. IKE errors exhibit larger errors in the SS cases

than the non-SS cases, similarly as the position errors.

However, IKE evolves similarly as intensity, especially

in the non-SS cases without GH, where an unbounded

error growth is seen in both intensity and IKE.

It is known that dynamical processes involved in

weakening and intensification of TCs are rather differ-

ent. However, despite such differences, it appears that

sampling the TC with high-altitude dropsondes from

GH helps reduce the errors that result from these pro-

cesses. Overall, it is evident that GH dropsondes dem-

onstrate a larger impact for TCs that undergo relatively

large intensity change during DA. As a result, we see

larger relative skill in the final analyses for the non-SS

FIG. 8. Average (a) track and (b) MSLP forecast errors and (c),(d) their corresponding relative skill (% im-

provement) for cases with and without dropsondes assimilated. The 95% confidence intervals for the errors at each

forecast lead time are shown in error bars. The forecast errors at a given forecast lead time that are at least 90%

statistically significant are indicated in stars in (a),(b). The errors and confidence intervals for cases without

dropsondes are slightly displaced in x axis to avoid overlapping with the ones with dropsondes.
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cases than the SS cases (Fig. 10). The relative skill from

assimilating GH dropsondes for non-SS cases ranges

between 25% and 35% for either the position or inten-

sity improvement, while it is only ~5%–10% for SS

cases.

The impact of GH dropsondes on the azimuthal

wavenumber-0 structure of the SS and non-SS cases is

shown in Fig. 11. The larger impact from assimilating

GH dropsondes occurs in non-SS cases, where visible

modulations of azimuthally averaged tangential wind

speed, radial wind speed, and equivalent potential

temperature anomaly u0e are evident. The assimilation of

GH dropsondes appears to intensify the tangential

and radial wind speeds, as well as increase the u0e, while
also resulting in a smaller vortex (smaller RMW) on

average. We notice that there is little change in the

wavenumber-0 structure for SS cases (Figs. 11d–f).

Overall, the impact on wavenumber-0 structure is con-

sistent with the overall analysis performance during DA

and in the final analyses. These larger modulations of

structure along with smaller position errors likely

contribute to the superior skill in the final analyses for

non-SS cases over SS cases (Fig. 10).

b. Deterministic forecasts

Position and MSLP forecasts are verified against the

best track at an interval of 12 h (Fig. 12). Forecast errors

for both track and MSLP beyond 24-h lead time are

FIG. 9. Average TC (a) position, (b) intensity, (c) MSLP, and (d) IKE absolute errors, as compared to the best

track during the 4-h DA window for SS and non-SS strong cases ($50 kt). The best track is interpolated to the

30-minDA cycle times. Shaded areas are the 95%confidence intervals for SS (light blue shadingwith dashed edges)

and non-SS cases (light purple shading with solid edges) in the experiment with GH assimilated.

FIG. 10. Relative skill (% improvement) for TC position, MSLP,

and intensity in the final analyses from experiments with GH

dropsondes vs without for SS and non-SS TCs with intensities

$50 kt. Number of cases is also indicated on the MSLP bars.
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smaller for non-SS cases than SS cases. Furthermore, GH

dropsondes have a positive impact on track forecasts for

non-SS cases nearly throughout the entire 5-day forecast.

In particular, the relative improvement remains above

15% for lead times up to 72h. The slight degradation at the

longer lead times of 84–84h is attributed to twoHurricane

Hermine (2016) cases, where a slightly slower TC motion

with GH dropsondes caused the track at later forecast

times (84–120h) to be very different because of complex

interactions with an upper-level approaching trough and

the TC undergoing extratropical transition (ET) while the

TC maintained tropical-storm-force winds. Forecasting of

TC track in such complex scenarios that involve ET re-

mains a challenge in operations (Jones et al. 2003; Evans et

al. 2017). However, the 84–96-h degradation is shown not

to be statistically significant (Fig. 12a).

For the MSLP forecasts of non-SS cases, a small positive

impact is seen in the first 24h, followed by amore consistent

positive impact (;20% improvement) beyond 48-h lead

time. The degradation of the forecasts between 24 and 48h

FIG. 11. Composite azimuthal averages of (a),(d) tangential wind speed; (b),(e) radial wind speed; and (c),(f)

equivalent potential temperature anomaly u0e for (a)–(c) non-SS and (d)–(f) SS TCs.
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is associated with cases that undergo eyewall replacement

cycles (ERCs), such as Edouard (2014) on 16 September

and Gaston (2016) on 29 August. For these two cases, the

GH dropsondes mainly sampled the outer environment of

the TCs and provided limited coverage of the inner core.

Therefore, the two cases produce analyses with large in-

tensity errors (.20-kt errors, compared to the best track)

at the initial time even with the assimilation of the GH

dropsondes. It is also possible that the important dynamical

processes (e.g., ERC) involvedmay not bewell represented

by the measurements, which could contribute to the fore-

cast degradation for the two cases. Furthermore, intensity

prediction duringERC continues to be a challenging task in

research and operational practice. The degradation seen at

120h ismainly from theGaston (2016) case at 1200UTC27

August, where a faster forward motion of the storm is seen

in the experimentwithGHdropsondes assimilated after the

TC turns east-northeastward beyond 36-h forecast lead

time, resulting in an intensity forecast degradation after that

time. Nevertheless, it is likely that such variability of error

with forecast lead time is also due to limited sample size.We

further hypothesize that the storm-relative preprocessing in

HEDAS, which assumes the TC structure is nearly sta-

tionary during the 6-h observation period (Aksoy 2013),

may be limiting the performance of GHdropsondes in fast-

moving cases, such as TCs that undergo ET, especially

when the number of center fixes available is limited to in-

terpolate observation locations in between.Optimization of

assimilating dropsondes in these cases needs to be exam-

ined and is beyond the scope of the current study.

6. The impact of GH and crewed aircraft data on
TC forecasts

The impact of GH dropsondes on TC forecasts is also

examined for cases with crewed aircraft data available at

the analysis time. Here, the denial experiments are

specifically based on the availability of TDR data, al-

though these data are almost always available along with

flight-level, SFMR, and dropsonde data from the P-3 or

G-IV aircraft in these cases.

The overall forecast performance for all cases with

and without crewed aircraft data is shown in Fig. 13.

With crewed aircraft data, assimilating GH dropsondes

leads to mostly superior track forecasts throughout the

5-day period. In fact, relative skill improvements to the

track forecasts are ;10%–20% (Fig. 13a). The positive

impacts on the track forecast are also at least 90% sta-

tistically significant beyond the 72-h lead time. How-

ever, in the case of intensity and MSLP, no obvious

benefit is seen from assimilating GH dropsondes at most

forecast lead times (Fig. 13c). The degradations of the

intensity forecasts, however, are not statistically signifi-

cant at most lead times, except at 12 and 84h, and are

thus subject to large variability among cases. For in-

stance, the intensity degradations in twoEdouard (2014)

FIG. 12. Average (a) track and (b) MSLP absolute forecast errors and (c),(d) their corresponding relative skill

(% improvement) for strong (with intensities $50 kt) non-SS and SS cases with and without GH dropsondes

assimilated. The 95% confidence intervals for the errors at each forecast lead time are shown in error bars. The

forecast errors at a given forecast lead time that are at least 90% statistically significant are indicated in stars in (a),

(b), where the open stars are for SS cases and filled stars are for non-SS cases. The displacement in x axis at each

forecast lead time for the errors and confidence intervals of the cases without dropsondes is only applied to avoid

overlapping with the ones with dropsondes.
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cases are related to the timing of the secondary eyewall

replacement (SEF) and ERC during forecasts, while the

degradations from Hermine (2016), Karl (2016), and

Cristobal (2016) are largely attributed to errors in storm

speed that result in the analyzed TCs to become out of

phase in how they interact with their environments at

various forecast lead times. Without crewed aircraft

data, GH dropsondes lead to mostly positive track

forecast skill throughout the forecasts (Fig. 13b) and

positive intensity and MSLP forecast skill beyond 1-day

lead time (Fig. 13d). The impact in the absence of

crewed aircraft data is greatest at long lead times (i.e.,

96–120h) with values of over 30%. The ;30% im-

provements at 96- and 108-h lead times are at least 90%

statistically significant. Further diagnosis indicates that

strong TCs (tropical storms or hurricanes at initial

times) dominate these track and intensity improvements

in the absence of crewed aircraft data. Regardless, the

overall results demonstrate that GH dropsondes are

capable of providing track and intensity forecast im-

provements, especially in the absence of crewed aircraft

data.

7. Track forecast examples

Two cases characterized by large track improvements

with the assimilation of GH dropsondes are discussed.

In the first case, Tropical Storm Edouard (2014) at

0600 UTC 12 September was located over 1000n mi

(1852km) east of the Lesser Antilles. Edouard at this

location could only be reached by the UAS, such as

GH, with .2-h on-station time. A lawnmower pattern

was used to sample the TC. The assimilation of GH

dropsondes resulted in small modifications on the initial-

time vortex structure (e.g., tangential and radial winds)

and thermodynamic environment near the TC. The TC

in both forecasts was then steered by the deep-layer

subtropical ridge in the central and eastern Atlantic

Ocean. The improved track forecast in the first 36 h is

likely due to the assimilation ofGHdropsondes. By 60 h,

slightly more westward upper-level flow was seen in the

forecast with GH dropsondes (Fig. 14b). This westward

shift of upper-level steering continued until 108 h, when

the TC made its northeastward turn. Further examina-

tion at 60 h reveals that the ridge to the northeast of the

FIG. 13. Relative skill of assimilating GH dropsondes over not assimilating GH dropsondes for (a),(b) track, and

(c),(d) intensity and MSLP averaged for all cases with crewed aircraft data available. The relative skill at a given

forecast lead time that is at least 90% statistically significant is indicated in stars in (a)–(d), where in (c),(d) the

significance is forMSLP. The baseline experiment in the left panel includes crewed aircraft data, while the baseline

one in the right panel does not. (e),(f)The number of cases at each forecast lead time for the two sets of experiments.
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TC was stronger in the forecast with GH, thus allowing

more northwestward steering (Fig. 14c) and an im-

proved track forecast. The track improvement at later

times in the forecast with GH is primarily attributed to

the change of the upper-level steering.

In the other case, Hurricane Gaston (2016) at 1200

UTC 27 August was in a favorable environment when

amid-to-upper-level low in the southeast began to move

away from the storm. A butterfly-shaped sampling pat-

tern was utilized in this mission. The GH dropsondes

during the 6-h data window mainly come from the flight

legs located in the southeast near-environment region of

the TC. The assimilation of the GH dropsondes resulted

in a noticeable improvement in the initial-time position

(Fig. 14d), likely due to better definition of the mid-to-

upper-level low in the near environment. The TC in both

forecasts was then steered in similar environments (Figs.

14d,e). By 24–48h, a blocking ridge started to build

to the northwest of the TC. The run with the GH

dropsonde data had a delayed northeastward turn due to

being farther west than the other forecast, embedding

it near this blocking ridge; the forecast without the

dropsonde data turned northeastward away from the

influence of the ridge around 24h. The TC in the fore-

cast with GH data was then positioned farther north,

compared to the one in the forecast without GH. Thus,

the TC in the forecast with GH traveled northeastward

much faster in the midlatitude westerlies along with

slightly amplified ridges in the southwest and southeast

of the TC (Fig. 14f). The improved track forecast in this

case is largely due to an improved initial-time position

from the assimilation of GH dropsondes.

8. Summary and conclusions

Results from a detailed composite study to investigate

GH dropsondes impacts on TC analyses and forecasts in

a vortex-scale ensemble DA system (HEDAS) and the

HWRF Model are presented. Innovation statistics of

assimilated dropsondes are evaluated to ensure that

data are properly assimilated. The probability distribu-

tion functions of dropsonde temperature, wind, and

humidity innovations indicate less bias and smaller root-

mean-square error after DA.

Since reconnaissance data from crewed aircraft mis-

sions have shown a large impact on accurately defining

FIG. 14. (a) Five-day forecast tracks for Edouard (2014) initiated at 0600UTC 12 Sep; (b) mean wind profiles averaged within 500 km of

the TC center; and (c) 200-hPa geopotential height (gpm; contours) and wind vectors (m s21) from the experiment with GH dropsondes

and the differences of geopotential height (with GH minus no GH; shaded) at lead time 60 h. (d)–(f) As in (a)–(c), but for the case of

Gaston (2016) initiated at 1200 UTC 27 Aug. The geopotential height, wind vectors, and differences in (f) are at 300 hPa.
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TC structure and the resulting forecasts (e.g., Christophersen

et al. 2017), GH dropsonde data denial experiments are

performed in two sets: one baseline set with crewed aircraft

data and one without. The majority of the composite ana-

lyses are evaluated using the sampleswithout crewed aircraft

data. In this scenario, experiments with GH dropsondes are

generally associated with smaller position and intensity er-

rors and a better wind–pressure relationship in the final

mean analyses. Better TC structures are also inferred from

smaller integrated kinetic energy (IKE) errors in the final

mean analyses when GH dropsondes are assimilated.

Overall, assimilation of GH dropsonde data also results in

statistically significant improvements of ;10% in track

forecasts through 72h and MSLP forecasts through 108h.

Among the more intense TC cases ($50kt), two sub-

groups are considered based on 24-h intensity change:

steady-state (SS) and nonsteady state (non-SS). GH

dropsondes demonstrate a larger impact on the non-SS

cases than the SS cases. This impact is evident in terms of

a large reduction of position, intensity, and IKE errors

during the 4-h DA window, as well as superior relative

skill for position, intensity, and structure in the final mean

analyses. As a consequence, the resulting forecasts for

non-SS cases are generally associated with higher skill for

both track and intensity, compared to SS cases. It is

noteworthy that the non-SS track forecast skill is higher

than those of all cases.

The forecast impact of GH dropsondes in the pres-

ence of crewed aircraft data is also examined. Overall,

statistically significant track-forecast improvements are

seen with GH dropsondes regardless of whether crewed

aircraft data were available, but intensity improvements

from GH dropsondes are only seen (beyond 36h) when

crewed aircraft data were absent.When assimilated with

crewed aircraft data, GH dropsondes have a mixed im-

pact on intensity forecasts.

We note that some statistically significant degradations

of the composite intensity forecast for the non-SS cases

between 24 and 48h and for cases with the presence of the

crewed aircraft data at 12 and 84h are likely due to small

sample size. Hence, variability in the individual cases

makes it difficult to draw broader conclusions and de-

velop dynamic explanations for the impact of assimilating

GH dropsondes. Regardless, GH dropsondes demon-

strate great value for TC analyses and forecasts, partic-

ularly for TCs that undergo large intensity changes

[$20kt (24h)21]. Greater intensity improvements in the

absence of data from crewed reconnaissance aircraft re-

veal the strengths of long-endurance UAS platforms to

sample TCs that traditional crewed aircraft cannot reach

due to range limitations. When traditional crewed air-

craft data are present, the impact from GH dropsondes

is smaller. This leads to the conclusion that in such

circumstances, it is critical to optimally coordinate sam-

pling strategies for crewed aircraft and UAS missions to

exploit each aircraft’s strengths. We further note that al-

though the current study is an extension of the case studies

presented byChristophersen et al. (2017), sample size in the

current study is not sufficient to represent the characteristics

of the two cases discussed in Christophersen et al. (2017)

(i.e., not sufficient cases with double eyewall wind struc-

ture). Hence, we are not able to draw any general conclu-

sions specifically related to these case studies.

Finally, it is noteworthy to clarify that the GFS

ensemble-based analyses used as the initial and boundary

conditions in this study did not assimilateGHdropsondes

operationally; thus, the impact of GH dropsondes on

lateral forcing is unknown with the current dataset. As

GH dropsondes became operationally included in the

GFS in 2017, future experiments should be devised to

examine the full impact of GH dropsondes on regional

and global model analyses and forecasts together. We

further caution that generalizations drawn from results

presented in this studymust bemade with restraint due to

possible dependence of outcomes on the specifics of the

DA and modeling systems employed. Moreover, in addi-

tion to theGHdropsonde observations that were the focus

of the current study, the GH has carried various remote

sensing instruments during NASA’s HS3 and NOAA’s

SHOUT field campaigns. These observing platforms

include the High-Altitude Monolithic Microwave In-

tegratedCircuit (MMIC)SoundingRadiometer (HAMSR;

Brown et al. 2011), the Scanning High-Resolution In-

terferometer Sounder (S-HIS; Revercomb and Taylor

2017), High-Altitude Imaging Wind Rain Airborne

Radar (HIWRAP; Heymsfield et al. 2013) conically scan-

ning Doppler radar, and cloud physics lidar (CPL; McGill

et al. 2002). Assimilation of data from these instruments

could modify the relative impacts of GH dropsondes, as

well as observations from crewed aircraft in ways that may

not be directly extrapolated from current findings.
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